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Agenda:

1. Motivations and overview of Collaborative Machine Learning (CML)

2. Our NeulPS’21 paper: “Gradient-Driven Rewards to Guarantee Fairness in
Collaborative Machine Learning”

3. Brief follow-up on our most recent works addressing some open issues.

4. Q&A



Importance of data in ML

% “Supervised learning, while successful in a wide variety of tasks, typically
requires a large amount of human-labeled data ...” - Yoshua Bengio, Geoffrey
Hinton, and Yann LeCun [1].

% “In many industries where giant data sets simply don’t exist, | think the focus

has to shift from big data to good data ...” - Andrew Ng [2].

For ML to be effective, a large amount of good/high-quality data are

needed.

[1] Deep Learning for Al, Turing Lecture, Communications of the ACM, July 2021, Vol. 64 No. 7, Pages 58-65.
[2] https://spectrum.ieee.org/andrew-ng-data-centric-ai, accessed 2022 May 30th.



https://spectrum.ieee.org/andrew-ng-data-centric-ai

Motivations for CML

e Quantity - Distributing the burden of data collection (in cross-silo FL) or

effectively utilizing naturally distributed data (e.g., in cross-device FL).

e Quality - Data valuation to identify good/high-quality data in the specific ML
use-cases.
o The same data are not equally valuable for different ML algorithms; the
same data are not equally valuable if others have access.

o Another application is for pricing in Al marketplace.
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Federated learning (FL)

Suppose N self-interested and honest agents, each " .
with a local dataset D;. The federated objective is: W = argimniny, Zz sz(w7 Dz)

In iteration t:

sz
For Agent i: < —nVF(wi,t; Dz) For Server: |uN,t <— Z pz :

Wiei1 < Wi

-
— \ | Should every agent be
: = > [ . $ rewarded equally?
/ -@- 43 otherwise how?
<

D: is an importance coefficient, I" is a normalizing constant and N := {i;1 < ¢ < N}denotes all the agents.



Fair training-time rewards

Instead of rewarding all the agents equally, reward them fairly: Agents that upload more

valuable gradients are rewarded better.

o Incentivize the agents to collect more data of higher quality.

1. How to determine the values of (the gradients of) the agents fairly?

2. How to guarantee the rewards are fair?



Fair training-time rewards

1. How to determine the values of (the gradients of) the agents fairly?

The Shapley value (SV) with several intuitive fairness properties.

Al | \ _ / SV1

A2 L ——>@—>i — >  SV2
A3 — \svz;

i A

1l

null player: if an agent uploads non-valuable gradients, the corresponding SV is zero.

symmetry: if two agents upload identical (equally valuable) gradients, their corresponding
SVs are equal.



Fair training-time rewards

2. How to guarantee the rewards are fair?

A higher SV leads to a better downloaded gradient.

<
A !
= T~ SV
n2 L —— &) — i > 5\2
/ T 5V3

A3 g

LA

For an agent /:

e contributing more (while others remain the same) leads to a better reward,;
e contributing more than agentj leads to a better reward than agent .



Fair training-time rewards

2. How to guarantee the rewards are fair?

In each iteration, the agents are rewarded with carefully managed gradients.
e inherent rewards: no need for additional external resources;

e the agents do not need to wait till the end [1,2];

e J/ocal-to-global: fairness in each iteration = fairness overall (Theorem 2).

[1] Profit Allocation for Federated Learning. Tianshu Song, Yongxin Tong, Shuyue Wei, IEEE Big Data, 2019.
[2] A Principled Approach to Data Valuation for Federated Learning. Tianhao Wang, Johannes Rausch, Ce Zhang, Ruoxi Jia, Dawn Song, 2020, LNCS.



Cosine gradient Shapley value (CGSV)

Definition 1 (Cosine gradient Shapley value (CGSV)). Let II\/ be a set of all possible permutations
of N and S, ; be the coalition of agents preceding agent ¢ in permutation 7 € IIys. The CGSV of
agent ¢ € N is defined as

¢i = (/N cn, [¥(Sns U{i}) — v(Sri)] - (2)
The gradient valuation function: I/(S) = COS(’LLS, 'u,N) where u; Fni—ZfH, Us — Y o5 Dil
us
Os v(S) = cos(us,wy ) = cos(fs)
wy u(S) > 1(S)
U o AN _
S O v(S') = cos(ug,up) = cos(fg)

e The CGSV ¢7, of an uploaded gradient u; (i.e., contribution from agent /) is evaluated via the vector
alignment between W; and Ws, via the cosine similarity [1].

[1] A Reputation Mechanism Is All You Need: Collaborative Fairness and Adversarial Robustness in Federated Learning. Xinyi Xu, Lingjuan Lyu. 2021
FL-ICML workshop (Oral).



Efficiently Approximating CGSV

e Computing the exact CGSV incurs O(2" D) which is practically infeasible for larger N.

e We provide an efficient approximation (with a bounded error) as:

&; ~ P; = cos(ui, uy)

Theorem 1 (Approximation Error). Let [ € R™. Suppose that ||u;|| = T and |{(w;, un)| > 1/1
foralli € N. Then, ¢p; — Liwp; < IT? where the multiplicative factor L; can be normalized away.

e Intuition: exploit linearity of CGSV and linearity of cosine similarity to “branch and bound”.

e [t reduces the complexity to O(IND) and we empirically demonstrate its effectiveness against a Monte
Carlo sampling-based (€, ) —approximation.



Efficiently Approximating CGSV
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e We compare Zl , £2 errors with the exact value and runtime against N and D.
e Solid lines denote our approximation and lower is better.

e Our approximation performs better for all 3 metrics and the performance gap widens as N increases.



Server-Side Training-Time Gradient Reward Mechanism

e Gradient aggregation (by Server)
o Update the contribution:
Tit
Tit < QT 1+ (1—a) Vit , Tit & —=————
ireN Tilt
m The cumulative update over iterations helps reduce fluctuations and provide a

smoother estimate of the contributions of the agents.

o  Compute the aggregate gradient:

Upp < Dy Tit Wit
m T tisthen used as the importance coefficient to aggregate the gradient.



Server-Side Training-Time Gradient Reward Mechanism

e Gradient download (for Agent i)
o Calculate the fair gradient reward s.t., “A higher SV leads to a better downloaded

gradient.” [07 1}

_ _Dttanh(fr;;)
v; ¢ < mask(upr ¢, i) Git | A

max, tanh(8r; ),

m sparsification: mask(u, q) retains the largest max(0, ¢) components in magnitude of W
and zeros out all the rest. Lower sparsification (higher g; ) < better downloaded gradient.

m  {it is max-normalized cumulative SV: higher SV & higher Tit & higherdi,t .

m gltruism degree B quantifies how much an agent with [ower contributions benefit
larger < more altruistic/equitable while smaller § < stricter fairness.

o Update local model: wi,t < wi,t—]_ —I_ vi,t




Putting it all together

Y1+ = cos(61)

T1t = QT1t-1 + (1 - a)¢1’t
B D tanh(fBri4)
qit = I-ma,xi/ 1:511111(67"@",1&)J

/ ¢ |wijwa|ws|wy wp
: : ©

Awy g1 = —nVF(w14;D1) ;mf‘?lfﬁ'_‘_N,t’th% 1loToT1l---11
& it :

Wil = Wi 01t = [ 0]0fws)---- oo

Agent 1 Server



Global Fairness Guarantee

Theorem 2 (Fairness in Model Performance). Define 0; ; = ||war — w; ¢|| and wyr is near a
stationary point of ¥ () and some regularity conditions on the objective function ¥(-). For anyt € Z™*
and V’I:,’I:’ - N, l:f’l"q;,t Z it and 573’,15—1 — 5i,t—1 2 2H'vi,t 5 then F(wi,t) S F(wi/,t).

e |ocal fairness to global fairness:
o An agent that uploads better gradients can download better gradients (locally fair), and as
a result, this agent receives a better-performing model (globally fair).

e [ntuition:
o all agents start with the same model: Wy
o agents with higher T4t have less deviation from the trajectory: {wyg + Zle U He



Experimental setup & baselines

e Datasets e Data partitions
o  MNIST, CIFAR-10, Movie Reviews,

Stanford Sentiment Treebank

o uniform (UNI)

. . o powerlaw (POW)
e Comparison baselines

o FedAvg[1] and its variants m Individual datasets of different sizes

o qg-FFL[2], CFFL [3] o classimbalance (CLA)
o Shapley value-based: Extended m Individual datasets with different
contribution index (ECI) [4] available classes

o  Euclidean distance variant instead of e.g. MNIST, for N=5, the agents have

cosine similarity {1,3,5,710} classes respectively

[1] Communication-Efficient Learning of Deep Networks from Decentralized Data. H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Aguera y Arcas,
2017, AISTATS.

[2] Fair Resource Allocation in Federated Learning. Tian Li, Maziar Sanjabi, Ahmad Beirami, Virginia Smith. 2020, ICLR.

[3] Collaborative fairness in federated learning. Lingjuan Lyu, Xinyi Xu, Qian Wang. 2020, LNCS.

[4] Profit Allocation for Federated Learning. Tianshu Song, Yongxin Tong, Shuyue Wei, IEEE Big Data, 2019.



Fairness evaluation metric

Pearson correlation coefficient between standalone performance & final local model

performance.

e Standalone performance provides an estimate of the quality of the local dataset and thus the

quality of the contribution (via uploaded gradients) by the agents.

Final local model performance represents the rewards the agents receive at the end.

A correlation close to 1indicates the rewards are commensurate with the contributions (i.e.,
fair), and validates Theorem 2.



Fairness results

MNIST CIFAR-10 MR SST
No. Agents 10 20 10 5 5
Data Partition UNI POW  CLA UNI POW CLA UNI POW  CLA POW POW
FedAvg -45.60 5524  24.12 0.85 -32.58  40.83 18.47 97.48  98.75 48.68 57.50
q-FFL -44.73  39.00  22.38 -22.01 38.71 48.07 -17.64 5133  94.06 56.43 -75.92
CFFL: 83.57 91.80  81.24 82.52 94.70 85.71 78.25 72.55  81.31 96.85 93.34
ECI 85.26 99.83  99.98 80.95 99.41 95.21 75.85 79.50 99.55 97.69 95.00
DW 89.15 98.93  65.34 86.94 99.63 35:21 -23.14 9197 4545 99.20 97.12
RR 83.77 7117  =26.75 -18.64 2547 95.86 | 30.67 0.70 90.67 44.16 -25.11
Ours (EU) 84.25 98.25 99.82 80.55 9177 99.97 | 78.25 9424 9495 97.58 93:21
Ours (B = 1) 94.03 95.74  94.54 84.47 96.39 97.23 98.80 98.78  99.89 96.01 98.20
Ours (B = 1.2) | 94.75 97.28  96.23 90.52 9772 95.21 91.07 91.59  99.82 96.12 98.47
Ours (B = 1.5) | 96.34 86.99  95.37 82.68 90.94 98.75 93.55 93.78  95.89 95.32 97.88
Ours (8 = 2) 94.66 9120  95.38 96.90 91.33 94.32 89.80 88.78  93.39 92.22 95.74




Fairness results
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Fairness results

Train Loss
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Increasing altruism degree S “pushes” the training losses of all agents to be more equitably low, and it

improves the performance of agents with relatively lower contributions.



Accuracy results (on test set)

MNIST CIFAR-10 MR SST
No. Agents 10 20 10 5 5
Data Partition UNI POW CLA UNI POW CLA UNI POW CLA POW POW
Standalone 9191) 88(92) 53(92) | 91 (91) 89(92) 48(90) | 46(47) 43(49) 31(44) | 47(56) | 31(34)
FedAvg 93(94) 92(94) 53(93) | 93(93) 92(94) 49(92) | 48(48) 47(50) 32(47) | 51(63) | 33(35)
q-FFL 85(01) 27(45) 44(64) | 88(91) 48(53) 40(59) | 41(46) 36(36) 22(28) 12(18) | 23(25)
CFFL 90(92) 85(90) 34(44) | 91(93) 88(91) 39(46) | 39(41) 35(45) 22(40) | 44(53) | 31(32)
ECI 94(94) 92(94) 53(94) | 94(94) 92(94) 49(92) | 49(49) 47(51) 31(46) | 56(61) | 33(34)
DW 93(94) 92(94) 53(93) | 93(93) 92(94) 49(92) | 48(48) 47(50) 32(47) | S51(62) | 33(35)
RR 94 (95) 95(095) 64(72) | 94(95) 94(95) 50(56) | 47(59) 49(51) 26(29) | 63(65) | 36(36)
Ours (EU) 94(94) 94(94) 54094) | 94(94) 94(94) 49(92) | 49(49) 49(51) 32(46) | 54(59) | 34(36)
Ours (B = 1) 96 (97) 94095 T74095) | 95096) 96(97) 65(93) | 61(62) 60(62) 35(54) | 62(76) | 35(36)
Ours (B =1.2) | 94(95) 95(95) 75(095) | 96(96) 96(97) 65(93) | 61(62) 60(62) 35(54) | 62(75) | 34(37)
Ours (B =1.5) | 97097) 95095) 75095) | 96(97) 94(95) 65(93) | 61(62) 59(62) 35(54) | 62(74) | 35(37)
Ours (8 = 2) 96 (96) 95(096) 73(94) | 97 (97) 95(96) 66(95) | 62(62) 61(62) 36(54) | 62(75) | 35(37)

Average (maximum) test accuracies over all agents.



Runtime results

MNIST CIFAR-10 MR SST

No. Agents ] 10 20 3 10 5 5
FedAvg 1.17 (7e-3) 1.05 (le-2) 4.29 (le-2) 1.66 (7e-3) 7.41 (le-2) 1.3 (le-4) 1.31 (6e-4)
q-FFL 6.14 (4e-2) 4.97 (5e-2) 91.20 (0.3) 97.28 (0.4) 58.94 (7e-2) 90.01 (8e-3) 82.85 (4e-2)
CFFL 32.15 (0.2) 21.79 (0.3) 500.03 (1.6) 570.12 (2.0) 302.44 (0.4) 479.12 (0.2) 487.71 (2e-1)
ECI 2377.33 (16) 11937.80 (141) | 23749.06 (74) | 3571.75(15) | 58835.83 (84) | 422.85 (4e-2) 801.20 (0.4)
DW 0.89 (6e-3) 0.79 (9e-3) 1.60 (S5e-3) 1.21 (Se-3) 5.29 (7e-3) 0.99 (1e-5) 0.98 (5e-4)
RR 0.89 (6e-3) 0.82 (9e-3) 1.60 (5e-3) 3.31 (le-2) 5.41 (7e-3) 1.01 (5e-4) 0.99 (5e-4)
Ours (EU) 0.89 (6e-3) 0.81 (9e-3) 1.61 (5e-3) 1.22 (5e-3) 5.33 (7e-3) 1.01 (5e-4) 0.99 (5e-4)
Ours (Cosine) 6.34 (4e-2) 4.94 (5e-2) 94.30 (0.3) 98.39 (0.4) 54.94 (7e-2) 89.81 (8e-3) 82.87 (4e-2)

Number of seconds (ratio w.r.t. training time).



Discussion

Fairness in rewards in action

e FEach agent’s interest is protected, i.e., they get rewarded commensurately with their
contributions measured in
e Flexibly control the proportionality between rewards and contributions, via f.

e Computational overhead at server is small.
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Latest Publications

ML Algorithm Resource Desiderata

NeurlPS’21 Fair CML gradient descent functionals of data fairness and
training-time rewards

NeurlPS’21 Volume ML model agnostic statistics of data fairness, replication
robustness
AAAI'22 generative modeling statistics of data fairness, synthetic data
(distributional divergence) generation
ICML22 Bayesian parameter statistics of data (Fisher asymptotic fairness
learning information)

® |JCAI-ECAI2022 - Survey on Data Valuation

o Use cases: interpretable ML, active learning, adversarial data detection

o Data valuation principles and desiderata



Thank you!




