

Probably Approximate Shapley Fairness with Applications in Machine Learning

Zijian Zhou^{1*} Xinyi Xu^{12*}, Rachael Hwee Ling Sim¹, Chuan Sheng Foo², Kian Hsiang Low¹

1 Department of Computer Science, National University of Singapore, Singapore 2 Institute for Infocomm Research, A*STAR, Singapore * Equal Contribution

- Background & Motivation
- Formulation
- Algorithm
- Experiments

Shapley Value (SV)

Excepted marginal contribution of a player in a group.

Number of players

SV in Machine Learning

- Feature attribution
- Federated learning
- Data Valuation
- etc.
- E.g., feature attribution with SHAP¹²

SV of each feature explains its importance in model performance

1 Lundberg et al., A Unified Approach to Interpreting Model Predictions, NeurIPS 2017 2 Image source: https://github.com/slundberg/shap

Because SV is **FAIR**

SV satisfies a set of **fairness axioms**:

- Nullity: if a player *i* contributes nothing to any subgroup, then $\phi_i = 0$.
- **Symmetry**: if *i* and *j* contributes equally to every subgroup, then $\phi_i = \phi_j$.
- (Strict) Desirability: if *i* contributes more or equal than *j* to every subgroup (and with at least one strictly greater contribution), then $\phi_i > \phi_j$.

SV Computation

However, computing SV is **expensive**

$$\phi_i(N, v) = 1/(n!) \sum_{\pi \in \Pi} \sigma_i(\pi)$$
Iterate through all $|\Pi| = N!$ different permutations
Exponential in terms of N

Feature attribution: N is usually in the range 100 - 1000Federated learning: N is usually at least 10 Data valuation: N is usually at least 1000

SV Estimation

• Existing methods try to estimate SV with high *accuracy*

• However, they neglected the important aspect of **fairness** in their approximations. Methods focusing on

Metric	Objective
Accuracy	Mean Squared Error: $\sum ig(\phi_i - \widehat{\phi}_i ig)^2$
Fairness	Various Fairness Properties: Nullity, Symmetry, etc

- Background & Motivation
- Formulation
- Algorithm
- Experiments

SV Estimation with Fairness Consideration

Probably Approximate Shapley Fairness Axioms for **SV Estimates**

Probably Approximately Correct Learning Framework:

• With probability at least $1 - \delta$, an algorithm A outputs a hypothesis h with error $\leq \epsilon$

Probably Approximate Shapley Fairness:

• With probability at least $1 - \delta$, the Shapley estimate satisfies the fairness properties with error $\leq \epsilon$

Probabilistic Version of Shapley Fairness

- Nullity: (the conditional event that) for every $i \in N$, $|\varphi_i| \le \epsilon_2$ given that $\phi_i = 0$.
- **Symmetry**: (the conditional event that) for all $i \neq j \in N$, $|\varphi_i \varphi_j| \leq (\epsilon_1 |\phi_i| + \epsilon_2) + (\epsilon_1 |\phi_j| + \epsilon_2)$ given that $\phi_i = \phi_j$.
- **Desirability**: (the conditional event that) $\varphi_i \varphi_j \ge -(\epsilon_1 |\phi_i| + \epsilon_2) (\epsilon_1 |\phi_j| + \epsilon_2)$ given that $(\exists B \subseteq N \setminus \{i, j\}, v(B \cup \{i\}) > v(B \cup \{j\})) \land (\forall C \subseteq N \setminus \{i, j\}, v(C \cup \{i\}) > v(C \cup \{j\})).$

Here, φ_i denotes the estimate of ϕ_i . ϵ_1 and ϵ_2 are parameters regulating the tolerance for estimation error.

Objective of SV estimation: Fix a level of error (ϵ_1, ϵ_2) , satisfy Probably Approximate Shapley Fairness Axioms with at least probability $1 - \delta$.

Fairness Guarantee

Measuring the level of fairness of SV estimates

Exploit the concept of Signal-to-Noise ratio

Fidelity Score (FS): the fidelity score of an SV estimate φ_i is defined as

$$f_{i} = \underbrace{\left(\left| \phi_{i} + \frac{\epsilon_{2}}{\epsilon_{1}} \right| \right)^{2}}_{\text{Var}(\varphi_{i})} \xrightarrow{\text{Signal with error tolerance}}$$

Fidelity Score and Fairness Guarantee

Key Result (**Proposition 1** in our paper):

- If φ_i 's are independent, then with probability at least $\left(1 \frac{1}{\epsilon_1^2 f_i}\right)^n$, the three probably approximate fairness properties are satisfied within error ϵ_1 .
- Otherwise, if φ_i 's are dependent, the probability is at least $1 \frac{n}{\epsilon_1^2 f_i}$.

KEY TAKEAWAY: higher f_i means better fairness guarantee.

- Background & Motivation
- Formulation
- Algorithm
- Experiments

Estimate SV with Fairness Guarantee

Main Idea: **Optimize** f_i to improve fairness guarantee.

Step 1. **Greedily** evaluate the player with the smallest fidelity score.

Step 2. Use **importance sampling** to further reduce estimation noise.

Key Result (**Proposition 3**): with equal budget, Step 1 & Step 2 combined produces higher f_i than classic Monte Carlo method (abbr. as MC on the right).

- Background & Motivation
- Formulation
- Algorithm
- Experiments

Experiment conducted

- under various **ML application scenarios**
- with **different datasets**
- to verify the three probably approximate fairness axioms

A1: Nullity Property with Agent Valuation¹

- SV represents the contribution of each agent in FL/CML settings
- Dataset: Hotel reviews with 10 agents, each with a subset of 1000 samples
- Metric: Error of SV with small absolute values after standardization; Lower is better.

Method	$\sum_{i: m{\phi}_i \leq 0.01} m{arphi}_i-m{\phi}_i $, where $m{\phi}^Tm{1}=m{arphi}^Tm{1}=m{1}$
MC	4.40
Owen Sampling	3.70
Sobol Sampling	8.54
Stratified Sampling	4.10
KernelSHAP	48.9
Ours	1.40

A2: Symmetry Property with Datapoint Valuation¹

- SV represents the value of each datapoint in the dataset
- Dataset: Breast Cancer (with each data point duplicated)
- Metric: For each duplication pair (*i*, *i*'), calculate:
- 1. log sum ratio $\log \sum_{i,i'} \max(\frac{\varphi_i}{\varphi_{i'}}, \frac{\varphi_{i'}}{\varphi_{i}})$
- 2. the average proportion where the absolute error exceeds a threshold. For both, lower is better

A3: Desirability Property with Feature Attribution¹

- SV represents the importance of each feature
- Dataset: Wine dataset with 7 features extracted by Principal Component Analysis
- Metric: Number of inversions where relative order of SVs change in estimates; Lower is better

Method	$N_{\text{inv}} = \sum_{i \neq j} 1_{\phi_i > \phi_j \cap \varphi_i < \varphi_j} + 1_{\phi_i < \phi_j \cap \varphi_i > \varphi_j}$
MC	0.4
Owen Sampling	1.2
Sobol Sampling	2.4
Stratified Sampling	0
KernelSHAP	3.6
Ours	0

1 Lundberg et al., A Unified Approach to Interpreting Model Predictions, NeurIPS 2017

Discussions and Future Work

Summary

- We identified an important yet overlooked problem with applying SV in a variety of ML applications
- We formulate a framework for analyzing the level of Shapley fairness of SV estimates
- Under the framework, we introduce a simple yet effective algorithm to estimate SV with theoretical Shapley fairness guarantee

Future Work

• We focus on designing an algorithm for **unbiased estimates** of SV. Are there any biased estimates that can achieve better probably approximate fairness?

